Heat Treatment Machinery

15
Used hardening furnaces etc. for processing metal
Categories
Reset filters Show items
Show on map view
MTA TAE evo 101 LASER Cooling Unit
shape
Netherlands, 5234 GD 's-Hertogenbosch
MTA TAE evo 101 LASER Cooling Unit
WILL & HAHNENSTEIN EWK-SO drying oven
shape
Germany, 73235 Weilheim Teck
WILL & HAHNENSTEIN EWK-SO drying oven
NABERTHERM N131 curing oven
shape
Germany, 78132 Hornberg-Niederwasser
NABERTHERM N131 curing oven
BRENNENSTUHL S18 drying oven
shape
Germany, 73235 Weilheim Teck
BRENNENSTUHL S18 drying oven
KELLER, IHNE & TESCH TRUS 30 chamber furnace
shape
FORNELL EFCO225FRT curing oven
shape
Germany, 71384 Weinstadt
FORNELL EFCO225FRT curing oven
NABERTHERM M 50 Curing oven
shape
Germany, 82024 Taufkirchen
NABERTHERM M 50 Curing oven
ZIRKONZAHN KERAMIKOFEN1500 sintering furnace
shape
MIHM-VOGT SLP4 burn-out furnace
shape
Germany, 73235 Weilheim Teck
MIHM-VOGT SLP4 burn-out furnace
NABERTHERM N11 / H Curing oven
shape
Germany, 97944 Boxberg
NABERTHERM N11 / H Curing oven
NABERTHERM N11 / H Curing oven
shape
Germany, 97944 Boxberg
NABERTHERM N11 / H Curing oven
HERAEUS KR 170 Curing oven
shape
Germany, 97944 Boxberg
HERAEUS KR 170 Curing oven
Complete Heat Treatment Shop
shape
Play
Germany, 01665 Klipphausen
Complete Heat Treatment Shop
EBNER GASBEHEIZTER OFEN Bell Annealing furnace
shape
NOLZEN hardening furnace
shape
Germany, 40472 Düsseldorf
NOLZEN hardening furnace

There are many types of industrial furnaces available for the heat treatment of steel. Drying furnace, muffle furnace, hardening furnace - the list is just endless. The basic principle is simple: steel and other metals undergo controlled heating, which either changes their atomic structure or only their surface structure. Quenching, hardening and annealing are some examples of the former, while case hardening, carburizing and nitriding are examples of the later type of processes. You will find used machinery and furnaces for heat treatment at Surplex. Even some recent models from NABERTHERM and other top manufacturers are available.

Heat treatment of steel or cast iron workpieces is generally conducted in order to extract particular properties that are required for the application or for subsequent processing. Therefore, heat treatments can be subdivided into various metalworking processes. Generally, these are processes that bring about a structural transformation in the material or processes that treat the surface of a work piece.

  • Used at steel or cast iron work stations
  • Extracts the necessary material properties
  • Subdivided into micro-structural transformation or surface treatment
Quality Great offers Personalised

In order to achieve these things, there are various thermal and thermo-chemical processes that can be used. Annealing (particularly soft annealing) is used to increase the machinability of the materials. Stress-relief annealing also falls under this category. These thermal processes are used to reduce the stress in a workpiece, which has built up from previous processes e.g. from rollers. Two types of thermal processes are annealing and hardening. Hardening can either take place over the whole piece of the material or only on the surface, where it can reduce the risk of the tool steel breaking. This means, that a hard core is surrounded by a hard crust.

The thermo-chemical processes can be subdivided into carbonising, nitriding, borating and carbonisation. There is a variety of possibilities for tempering, like soft annealing, normal annealing, stress-relief annealing, homogenisation, coarse-grain annealing and recrystallisation annealing. These methods are based on production specific requirements. A thermal heat treatment like surface hardening, general hardening, annealing, and austempering is attributed to the application. Thermo-chemical processes (e.g. nitration, ferritic nitrocarburisation, carbonitriding and carbonisation) are used to, for example, increase the carbon content on specific areas of the workpiece.

The characteristics of treating iron with heat have been known for millennia. Modern technologies and the use of effective furnaces, annealing ovens, and annealing furnaces allow for the workpiece to be processed and reach its desired material characteristics. Programmable temperature and time control ease the work process.

High-quality tool steel is processed during the construction of tools. To allow for this production, the stress is relieved and then processed. These basically formed workpieces are (depending on their future use) hardened either completely or only on the surface. Afterwards, the workpiece will be further processed with a grinding machine. Therefore, it is important to ensure that the manufacturing process does not result a soft annealed surface again. This can be prevented through cooling or careful delivery. Hard metal is produced through sintering. This should not be processed using a cooling device, even if they do not continually cool down. Otherwise, hair line cracks could occur in the metal, as hard metals cannot tolerate rapid changes in temperature. A carefully undertaken heat treatment can enormously increase the technological characteristics of a material. For example, the cutting punch for punching machinery contains a tough core and a hardened surface that is several tenths of a millimetre thick.

Several companies have specialised in the manufacturing of machines used for heat treatment. Some of the most recommended suppliers include MLW, NABERTHERM, ELIOG.